KPP Pulsating Front Speed-up by Flows

نویسندگان

  • Lenya Ryzhik
  • Andrej Zlatoš
چکیده

We obtain a criterion for pulsating front speed-up by general periodic incompressible flows in two dimensions and in the presence of KPP nonlinearities. We achieve this by showing that the ratio of the minimal front speed and the effective diffusivity of the flow is bounded away from zero and infinity by constants independent of the flow. We also study speed-up of reaction-diffusion fronts by various examples of flows in two and three dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Asymptotics for Kpp Pulsating Front Speed-up and Diffusion Enhancement by Flows

We study KPP pulsating front speed-up and effective diffusivity enhancement by general periodic incompressible flows. We prove the existence of and determine the limits c∗(A)/A and D(A)/A as A → ∞, where c∗(A) is the minimal front speed and D(A) the effective diffusivity.

متن کامل

Pulsating Front Speed-up and Quenching of Reaction by Fast Advection

We consider reaction-diffusion equations with combustion-type non-linearities in two dimensions and study speed-up of their pulsating fronts by general periodic incompressible flows with a cellular structure. We show that the occurence of front speed-up in the sense limA→∞ c∗(A) = ∞, with A the amplitude of the flow and c∗(A) the (minimal) front speed, only depends on the geometry of the flow a...

متن کامل

Uniqueness and stability properties of monostable pulsating fronts

In this paper, we prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov-Petrovsky-Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability propert...

متن کامل

Finite Element Computation of KPP Front Speeds in Cellular and Cat's Eye Flows

We compute the front speeds of the Kolmogorov-Petrovsky-Piskunov (KPP) reactive fronts in two prototypes of periodic incompressible flows (the cellular flows and the cat’s eye flows). The computation is based on adaptive streamline diffusion methods for the advection-diffusion type principal eigenvalue problem associated with the KPP front speeds. In the large amplitude regime, internal layers ...

متن کامل

Bounds on the speed of propagation of the KPP fronts in a cellular flow

We consider a reaction-diffusion-advection equation with a nonlinearity of the KPP type in a cellular flow. We show that the minimal pulsating traveling front speed c∗(A) in a flow of amplitude A satisfies the upper and lower bounds C1A ≤ c∗(A) ≤ C2A for A 1. We also analyze a related eigenvalue problem and establish an “averaging along the streamlines” principle for the positive eigenfunction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007